Completion of a Sparse GLIDER Database Using Multi-iterative Self-Organizing Maps (ITCOMP SOM)
نویسندگان
چکیده
We present a novel approach named ITCOMP SOM that uses iterative self-organizing maps (SOM) to progressively reconstruct missing data in a highly correlated multidimensional dataset. This method was applied for the completion of a complex oceanographic data-set containing glider data from the EYE of the Levantine experiment of the EGO project. ITCOMP SOM provided reconstructed temperature and salinity profiles that are consistent with the physics of the phenomenon they sampled. A cross-validation test was performed and validated the approach, providing a root mean square error of providing a root mean square error of 0,042°C for the reconstruction of the temperature profiles and 0,008 PSU for the simultaneous reconstruction of the salinity profiles.
منابع مشابه
Multi-Scale Model-Based Skeletonization of Object Shapes Using Self-Organizing Maps
In this paper, a new skeletonization algorithm suitable for the skeletonization of sparse shape is described. It is based on Self-Organizing Maps (SOM) – a class of neural networks with unsupervised learning. The so-called structured SOM with local shape attributes such as scale and connectivity of vertices are used to determine the object shape in the form of piecewise linear skeletons. The lo...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملSelf-organizing maps for the skeletonization of sparse shapes
This paper presents a method for computing the skeleton of planar shapes and objects which exhibit sparseness (lack of connectivity), within their image regions. Such sparseness in images may occur due to poor lighting conditions, incorrect thresholding or image subsampling. Furthermore, in document image analysis, sparse shapes are characteristic of texts faded due to aging and/or poor ink qua...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015