Completion of a Sparse GLIDER Database Using Multi-iterative Self-Organizing Maps (ITCOMP SOM)

نویسندگان

  • Anastase Alexandre Charantonis
  • Pierre Testor
  • Laurent Mortier
  • Fabrizio D'Ortenzio
  • Sylvie Thiria
چکیده

We present a novel approach named ITCOMP SOM that uses iterative self-organizing maps (SOM) to progressively reconstruct missing data in a highly correlated multidimensional dataset. This method was applied for the completion of a complex oceanographic data-set containing glider data from the EYE of the Levantine experiment of the EGO project. ITCOMP SOM provided reconstructed temperature and salinity profiles that are consistent with the physics of the phenomenon they sampled. A cross-validation test was performed and validated the approach, providing a root mean square error of providing a root mean square error of 0,042°C for the reconstruction of the temperature profiles and 0,008 PSU for the simultaneous reconstruction of the salinity profiles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Model-Based Skeletonization of Object Shapes Using Self-Organizing Maps

In this paper, a new skeletonization algorithm suitable for the skeletonization of sparse shape is described. It is based on Self-Organizing Maps (SOM) – a class of neural networks with unsupervised learning. The so-called structured SOM with local shape attributes such as scale and connectivity of vertices are used to determine the object shape in the form of piecewise linear skeletons. The lo...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Self-organizing maps for the skeletonization of sparse shapes

This paper presents a method for computing the skeleton of planar shapes and objects which exhibit sparseness (lack of connectivity), within their image regions. Such sparseness in images may occur due to poor lighting conditions, incorrect thresholding or image subsampling. Furthermore, in document image analysis, sparse shapes are characteristic of texts faded due to aging and/or poor ink qua...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015